Subscripts

i, j component i, j
$0 i$ pure component i (reference-state value)
$\infty \quad$ infinite diluted component i

Literature Cited

(1) Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor Liquid Equilibria Using UNIFAC; Elsevier: Amsterdam, 1977.
(2) Kehiaian, H. V. Ber. Bunsen-Ges. Phys. Chem. 1977, 81, 908-921.
(3) Kehlaian, H. V. Fluld Phase Equillb. 1883, 13, 243-252.
(4) Krug, J. Ph.D. Dissertation, Berlin (West), 1985.
(5) Paul, H. I.; Krug, J.; Gutsche, B.; Knapp, H. J. Chem. Eng. Data 1986, 31, 448-456.
(6) Paul, H. I.; Krug, J.; Knapp, H. Thermochim. Acta 1986, 108, 9-27.
(7) Gutsche, B. Ph.D. Dissertation, Berlin (West), 1982.
(8) Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process. Des. Dev. 1975, 14, 209-216.
(9) Hankinson, R. W.; Thompson, G. H. AIChE J. 1979, 25, 653-663.
(10) Reld, R. C.; Prausnitz, J. M.; Sherwood, T. K. Properties of Gases and Liquids: McGraw-Hill: New York, 1977.
(11) Prausnitz, J. M., et al. Computer Calculations for Multicomponent Va -por-Liquid Equillbria; Prentice-Hall: Englewood Cliffs, $\mathrm{NJ}_{,} 1980$.
(12) Willingham, G. J. et al. J. Res. NatI. Bur. Stand. 1945, 35, 219-244
(13) Pltzer, K. S.; Scott, D. W. J. Am. Chem. Soc. 1943, 65, 803.
(14) Riddick, J. S.; Bunger, W. B. Organic Solvents, 3rd ed.; Wiley-Interscience: New York, 1970; Vol. II.
(15) Kemme, R. H.; Kreps, S. I. J. Chem. Eng. Data 1969, 14, 98.
(16) Paul, H. I.; Knapp, H. Fluid Phase Equilib. 1966, 27, 427-436.
(17) Timmermanns, J. Physlco-Chemical Constants of Pure Organic Compounds; Elsevier: New York, 1965; Vol. 2.
(18) Forziatl, A. F. J. Res. Natl, Bur. Stand. 1943, 43, 555.

Reglsity No. 1-Chlorohexane, 544-10-5; toluene, 108-88-3; ethylbenzene, 100-41-4; n-propylbenzene, 103-65-1.

Measurements of the Viscosities of Compressed Fluid and Liquid Carbon Dioxide + Ethane Mixtures

Dwaln E. Diller, * Lambert J. Van Poolen, ${ }^{\dagger}$ and Fernando V. dos Santos ${ }^{\ddagger}$
Thermophysics Division, Center for Chemical Engineering, National Engineering Laboratory, National Bureau of Standards, Boulder, Colorado 80303

The shear viscosity coefficients of three compressed fluid and liquid carbon dioxide + ethane mixtures have been measured with a torsional plezoelectric crystal viscometer at temperatures between 210 and 320 K and at pressures to about 30 MPa (4350 psl). The experimental error is estimated to be smaller than 3% in most cases. The measurements have been compared with an extended corresponding states model and have been used to examine the dependences of the fluidities (reciprocal viscositles) on molar volume and composition.

Introduction

Mixtures of carbon dioxide with hydrocarbons are of considerable interest for natural gas processing and for enhanced oil recovery research. Carbon dioxide is an unusual molecule as it has a large quadrupole moment, but no dipole moment. Although viscosities have been measured for both pure carbon dioxide (1) and pure ethane (2), we are not aware of any published viscosity data for their mixtures.

Apparatus and Procedures

The measurement method, apparatus, and procedures are essentially the same as we have used for our work on pure

[^0]Table I. Carbon Dioxide + Ethane Mixture Compositions

mixture	carbon dioxide, mole fraction	ethane, mole fraction
1	0.49245	0.50755
2	0.25166	0.74834
3	0.73978	0.26022

ethane (2) and on pure carbon dioxide (1). The same torsional piezoelectric quartz crystal of about 5 cm length and 0.5 cm diameter discussed in ref 3 was used for these measurements. Viscosities were derived from measured resonance curve bandwidths by using the equation (4)

$$
\begin{equation*}
\eta=\frac{\pi f}{\rho}\left[\frac{M}{S}\right]^{2}\left[\frac{\Delta f}{f}-\frac{\Delta f_{\mathrm{vac}}}{f_{\mathrm{vac}}}\right]^{2} \tag{1}
\end{equation*}
$$

where ρ is the fluid density, M is the mass, S is the surface area of the crystal, f is the resonant frequency, and Δf is the reso-nance-curve bandwidth of the crystal, measured at one-half of the conductance at resonance. The frequencies, $f_{\text {vac }}$ and $\Delta f_{\text {vac }}$, are measured with the cell evacuated. The difference between f and $f_{\text {vac }}$ is usually negligible.
The gas mixture compositions, prepared gravimetrically from research grade carbon dioxide and research grade ethane, are summarized in Table I.

Chromatographic tests on the pure components showed that total impurities were below the 0.01% level for both gases. The errors in the mixture compositions are estimated to be smaller than 0.01%.

Figure 1. Dependences of the viscosities of compressed fluid and liquid carbon dloxide + ethane mixtures on density. Lines are drawn through the data to guide the eye.

Figure 2. Comparison of the viscosities of 0.49245 carbon dioxide +0.50755 ethane with the extended corresponding states model (14):
 (■) 220 K .

Each mixture was heated to a temperature well above its critical temperature and then compressed to a pressure well above its critical pressure before being introduced to the viscometer cell. The critical line for this mixture is given in ref 5 . For measurements on the liquid phase, the cell was cooled while adding fluid to keep the pressure well above the critical

Table II. Viscosities of Compressed Gaseous and Liquid 0.49245 Carbon Dioxide $\boldsymbol{+} \mathbf{0 . 5 0 7 5 5}$ Ethane Mixtures

T, K	P, MPa	$\rho, \mathrm{mol} \cdot \mathrm{L}^{-1}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$	T, K	P, MPa	$\rho, \mathrm{mol} \cdot \mathrm{L}^{-1}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$
320.00	34.3873	16.040	74.8	260.00	33.5978	19.131	114.7
320.00	29.7067	15.535	70.0	260.00	31.0881	18.995	112.3
320.00	25.5173	14.986	64.8	260.00	27.6705	18.799	109.3
320.00	19.9742	14.016	57.1	260.00	24.2241	18.583	105.3
320.00	15.9931	12.972	49.6	260.00	20.7994	18.346	101.3
320.00	13.5507	11.995	44.0	260.00	17.6547	18.105	97.1
320.00	11.9284	11.018	39.7	260.00	13.8553	17.774	92.1
320.00	10.7520	9.973	35.7	260.00	10.7428	17.456	86.9
320.00	9.9238	8.950	31.2	260.00	6.8998	16.977	80.9
320.00	9.2246	7.856	27.2	260.00	3.8527	16.480	76.5
320.00	8.7437	7.016	24.7				
320.00	8.1179	5.941	22.0	240.00	34.0660	20.135	138.6
320.00	7.5228	5.045	19.9	240.00	29.3063	19.929	133.6
320.00	6.6772	4.016	18.0	240.00	26.9680	19.820	131.9
320.00	5.6516	3.051	16.6	240.00	24.2718	19.689	123.9
320.00	4.1933	2.004	15.5	240.00	20.8723	19.513	122.7
320.00	2.3337	0.987	14.7	240.00	17.5230	19.325	117.1
				240.00	13.9706	19.106	113.8
300.00	32.4496	16.951	83.3	240.00	10.5286	18.871	109.7
300.00	27.6136	16.503	78.4	240.00	7.3008	18.624	103.8
300.00	23.1430	16.003	72.9	240.00	3.7059	18.306	98.7
300.00	16.5211	14.990	63.2				
300.00	12.4114	13.998	55.6	230.00	34.8095	20.640	155.1
300.00	9.8833	12.984	48.8	230.00	31.3936	20.510	152.5
300.00	8.4985	12.012	44.1	230.00	27.4881	20.353	143.1
300.00	7.7570	11.089	39.3	230.00	24.2919	20.216	139.5
300.00	7.3112	10.116	35.9	230.00	21.0745	20.070	133.1
300.00	6.9646	8.838	31.0	230.00	17.5062	19.897	134.0
300.00	6.7513	7.751	26.4	230.00	13.7060	19.697	125.0
300.00	6.6115	6.993	23.8	230.00	10.3406	19.503	121.4
300.00	6.4109	6.041	21.3	230.00	6.9050	19.285	118.0
300.00	6.0521	4.886	18.6	230.00	6.3095	19.245	117.7
300.00	5.6187	4.006	17.3	230.00	3.7306	19.061	111.7
300.00	4.8189	2.948	15.8	230.00	3.6024	19.051	113.4
300.00	3.7121	1.969	15.0	220.00	34.1478	21.085	169.5
300.00	2.1344	0.982	14.5	220.00	31.0910	20.980	166.4
280.00	34.6235	18.174	99.4	220.00	27.6143	20.854	162.6
280.00	31.1698	17.943	96.2	220.00	24.1894	20.724	158.6
280.00	27.5515	17.675	92.1	220.00	20.7429	20.586	152.6
280.00	24.2078	17.399	88.1	220.00	17.4025	20.444	148.6
280.00	20.6909	17.069	83.6	220.00	13.9342	20.287	142.8
280.00	17.1649	16.681	78.9	220.00	10.2167	20.105	138.5
280.00	13.6195	16.206	74.0	220.00	6.9275	19.930	134.3
280.00	9.7018	15.505	66.8	220.00	3.6075	19.738	129.3
280.00	6.1065	14.468	57.5				

Table III. Viscosities of Compressed Gaseous and Liquid 0.25166 Carbon Dioxide +0.74834 Ethane Mixtures

$T, \mathrm{~K}$	P, MPa	$\rho, \mathrm{mol} \cdot \mathrm{L}^{-1}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$
320.00	31.4160	14.798	62.1
320.00	21.1480	13.585	50.9
320.00	15.8320	12.556	45.6
320.00	12.6520	11.567	41.6
320.00	10.5550	10.478	37.3
320.00	8.9381	8.924	30.8
320.00	8.0189	7.393	24.6
320.00	7.5457	6.383	21.5
320.00	7.0875	5.439	19.0
320.00	6.3849	4.265	16.6
320.00	5.8158	3.544	15.1
320.00	4.6195	2.426	13.2
320.00	4.0551	2.012	12.6
320.00	2.3018	0.992	11.9
280.00	34.2437	16.810	86.1
280.00	30.8288	16.607	83.4
280.00	27.8011	16.412	80.5
280.00	24.3318	16.164	76.9
280.00	20.8174	15.881	73.0
280.00	17.4378	15.567	69.2
280.00	14.1208	15.203	65.1
280.00	10.5805	14.718	60.2
280.00	7.6093	14.173	55.5
280.00	4.8838	13.419	49.1
260.00	36.1170	17.742	101.9
260.00	32.1680	17.558	97.7
260.00	28.2900	17.362	94.1
260.00	24.4200	17.148	90.0
260.00	21.0010	16.939	87.1
260.00	17.7040	16.716	83.7
260.00	14.0246	16.434	79.0
260.00	10.5381	16.123	74.1
260.00	7.1869	15.765	70.1
260.00	3.6321	15.277	64.6
240.00	36.2400	18.553	120.1
240.00	31.9460	18.389	117.0
240.00	27.9990	18.227	112.5
240.00	24.0450	18.052	107.7
240.00	21.2010	17.918	104.7
240.00	17.6710	17.738	101.6
240.00	13.8220	17.522	97.1
240.00	10.0560	17.286	93.1
240.00	7.1265	17.079	88.3
240.00	3.5840	16.793	84.4
220.00	35.2215	19.306	151.9
220.00	31.4993	19.187	149.2
220.00	27.7915	19.063	144.9
220.00	24.5276	18.948	141.5
220.00	20.8236	18.810	137.2
220.00	17.2957	18.670	133.6
220.00	13.9084	18.526	128.8
220.00	10.4504	18.368	124.6
220.00	7.1436	18.204	120.7
220.00	3.6211	18.013	115.6
210.00	36.2707	19.724	172.6
210.00	31.0845	19.574	169.8
210.00	27.7296	19.472	165.0
210.00	24.3142	19.363	160.9
210.00	20.7431	19.244	156.1
210.00	17.4136	19.127	151.6
210.00	14.5448	19.020	147.1
210.00	11.3239	18.894	143.0
210.00	7.2295	18.722	138.5
210.00	3.6147	18.556	134.2

pressure of the mixture. All viscosity measurements were performed along isotherms. Care was taken to avoid the liq-uid-vapor phase boundary to prevent a change in the composition; the cell was not evacuated between runs on a liquid mixture. Instead, the cell temperature was increased after each run, and gas was added to obtain the starting pressure for the next run.

Figure 3. Dependence of the viscosities of compressed liquid carbon dioxide + ethane mixtures on composition at fixed density (20 mol- L^{-1}): (O) interpolated from measurements; (-) curve drawn through interpolated measurements; (---) extended corresponding states model (14).

Flgure 4. Dependence of the viscosities of compressed liquid carbon dioxide + ethane mixtures on composition at fixed temperature (220 K) and fixed pressure (3.6 MPa): (O) interpolated from measurements; (-) curve drawn through interpolated measurements; (---) extended corresponding states model (14).

Pressures were measured with a commercial quartz transducer pressure gauge, checked against a commercial piston gauge. The two pressure gauges differed by less than 5 kPa . Densities were obtained from measured temperatures and pressures and a corresponding states equation of state (6). The equation of state was compared (6) with the measured PVT properties of carbon dioxide + ethane mixtures (7-9) and is belleved to be accurate to better than 1%.

Results and Discussion

Measurements of the viscosities of compressed fluid and liquid carbon dioxide + ethane mixtures are presented in Tables II-IV and Figure 1. The temperature, pressure, and density ranges covered are $210-320 \mathrm{~K}, 2-30 \mathrm{MPa}$, and $1-24 \mathrm{~mol} \mathrm{~L}^{-1}$, respectively. Measurements were not made in the viscosity critical region, (5) which is roughly within 1% of the critical temperature and within 30% of the critical density.

There are no other viscosity data for carbon dioxide + ethane mixtures to our knowledge. Therefore, our estimates of experimental errors are based mainly on comparisons of our pure fluid data with data of others $(3,10,11)$. The differences are generally smaller than 2%. As the densities calculated from ref 6 may be somewhat less accurate than calculated pure fluid densities, we have increased our estimate of the

Flgure 5. Dependences of the fluidities (reciprocal viscosities) of compressed liquid carbon dioxide + ethane mixtures on molar volume.
viscosity errors to 3%. As the tabulated viscosities were obtained by dviding measured viscosity times density products by calculated densities, they can easily be improved when more accurate densities become available.

The dependences of the viscosities on density and temperature, shown in Figure 1, are similar to the dependences obtained for other pure fluids $(3,10,11)$ and mixtures at fixed
composition (12, 13). At high densities the viscosities are strongly dependent on density at fixed temperature and weakly dependent on temperature at fixed density.
The measurements on the nearly equimolar mixture are compared with an extended corresponding states model (14) in Figure 2. At densities smaller than $10 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$, differences up to $\mathbf{2 5 \%}$ are caused mainly by density errors contained in the

Table IV. Viscosities of Compressed Gaseous and Liquid 0.73978 Carbon Dioxide +0.26022 Ethane Mixtures

$T, \mathrm{~K}$	P, MPa	$\rho, \mathrm{mol} \cdot \mathrm{L}^{-1}$	$\eta, \mu \mathrm{Pa} \cdot \mathrm{s}$
320.00	33.6786	17.523	84.9
320.00	28.1473	16.812	77.7
320.00	23.1584	15.974	69.9
320.00	18.8481	14.966	62.3
320.00	15.7355	13.888	56.4
320.00	13.5679	12.738	52.4
320.00	12.3468	11.779	49.2
320.00	11.5308	10.911	43.4
320.00	10.7960	9.905	39.2
320.00	10.2977	9.086	36.1
320.00	9.6682	7.934	31.7
320.00	9.1354	6.952	28.7
320.00	8.4968	5.899	25.6
320.00	7.6797	4.804	23.1
320.00	6.8785	3.949	21.1
320.00	5.7554	2.990	19.7
320.00	4.1721	1.936	18.4
320.00	2.2809	0.950	18.2
280.00	32.7397	20.068	123.4
280.00	28.6013	19.754	117.4
280.00	24.1290	19.367	111.3
280.00	19.4250	18.884	104.4
280.00	16.3820	18.512	99.2
280.00	13.8850	18.155	93.8
280.00	10.7620	17.608	87.9
280.00	6.4490	16.461	76.2
260.00	35.4640	21.458	157.0
260.00	30.2560	21.168	150.5
260.00	27.2370	20.985	146.2
260.00	24.2100	20.788	141.8
260.00	20.8650	20.551	137.2
260.00	17.4890	20.286	131.3
260.00	13.9040	19.968	125.7
260.00	9.7575	19.536	118.6
260.00	7.1239	19.208	111.7
260.00	3.7949	18.699	104.1
240.00	36.8315	22.666	194.2
240.00	30.5519	22.396	185.8
240.00	27.3746	22.249	181.5
240.00	24.5530	22.111	179.2
240.00	20.7840	21.914	174.1
240.00	17.3490	21.721	167.9
240.00	13.2210	21.467	161.8
240.00	10.5610	21.287	158.1
240.00	6.9454	21.019	150.2
240.00	3.5947	20.737	144.4
220.00	31.5930	23.585	229.4
220.00	27.8190	23.450	227.0
220.00	24.4490	23.323	221.7
220.00	21.0200	23.187	216.5
220.00	21.0968	23.190	216.8
220.00	17.2560	23.030	209.9
220.00	13.9500	22.883	206.3
220.00	10.3790	22.714	198.0
220.00	6.9690	22.542	192.5
220.00	3.6169	22.359	186.0

viscosity model. The viscosity model makes use of a different, and substantially less accurate, equation of state in this range than given in ref 6 . At densities larger than $10 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ the density errors in the viscosity model are smaller than at low
densities, and the differences between measured and calculated viscosities are real deviations from corresponding states. In this density range such deviations are typical for pure fluids (15) as well as mixtures $(12,13)$.

The dependence of the viscosities of liquid mixtures on composition at one fixed density ($20.0 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$) is shown in Figure 3. Our purpose here is to try to examine the dependence on composition alone. It is not possible to fix all of the state variables at once, but work on pure fluids and mixtures at fixed composition has shown that the most important variable to fix at high densities is the density. The composition dependence shown in Figure 3 is somewhat more complicated than the composition dependences obtained for other mixtures we have examined $(12,13)$. There is an inflection point on the $0.5-0.7$ mole fraction carbon dioxide range which may be related to the occurrence of an azeotrope (16).

Figure 4 shows the dependence of the viscosities of liquid mixtures on composition at fixed temperature (220 K) and fixed pressure (3.6 MPa). Figure 4 is quite different from Figure 3 since the dependence on composition shown in Figure 4 is combined with the dependence on density and the change in density with composition is substantial at this temperature.
The dependence of the fluidities (reciprocal viscosities) of liquid mixtures on molar volume at fixed compositions and at fixed temperatures is shown in Figure 5. As for pure fluids (15), the dependence on volume is linear in this range, which could make possible a relatively simple correlation of these data.

Acknowledgment

We are grateful to H. J. M. Hanley for encouraging this work, to J. F. Ely for the equation of state computer program, to W. M. Haynes for mixture preparation, and to L. B. Bass for assistance with report preparation.

Registry No. CO_{2}, 124-38-9; ethane, 74-84-0.

Literature Clted

(1) Diller, D. E.; Ball, M. J. Int. J. Thermophys. 1985, 6, 619.
(2) Diller, D. E.; Saber, J. M. Physica (Amsterdam) 1881, 108A, 143.
(3) Haynes, W. M. Physica (Amsterdam) 1973, 67, 440.
(4) Webeler, R. H. W. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, 1961 (University Microfilms No. 61-5234, Ann Arbor, MI).
(5) Moldover, M. R.; Gallagher, J. S. AIChE J. 1878, 24, 267.
(6) Ely, J. F.; Magee, J. W.; Haynes, W. M. Research Report RR110 1987; Gas Processors Association, 6526 East 60th Street, Tulsa, OK 74145.
(7) Reamer, H. H.; Olds, R. H.; Sage, B. H.; Lacey, W. N. Ind. Eng. Chem. 1945, 37, 688.
(8) Gugnoni, R. J.; Eldridge, J. W.; Okay, V. C.; Lee, T. J. AlChE J. 1974, 20, 357.
(9) Holste, J. C., unpublished data, 1986.
(10) Haynes, W. M. Physica A (Amsterdam) 1977, 89A, 569.
(11) Diller, D. E. Physica A (Amsterdam) 1980, 104A, 417.
(12) Diller, D. E. Int. J. Thermophys. 1982, 3, 237.
(13) Diller, D. E. J. Chem. Eng. Data 1984, $29,215$.
(14) Ely, J. F.; Hanley, H. J. M. Ind. Eng. Chem. Fundam. 1981, 20, 323.
(15) Diller, D. E.; Van Poolen, L. J. High Temp.-High Press 1985, 17, 139.
(16) Sloan, E. Dendy, Colorado School of Mines, Goiden, CO 80401, private communication.

Received for review December 16, 1986. Revised December 22, 1987. Accepted May 6, 1988. This work was carried out at the National Bureau of Standards with support from the Gas Research Institute.

[^0]: ${ }^{\dagger}$ Calvin College, Grand Rapids, MI 49506.
 ${ }^{\ddagger}$ Faculdade de Clencias Lisboa, Lisbon, Portugal.

